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A numerical comparison of the Crank-Nicolson and Chebyshev rational method is 
presented for problems involving a specific class of linear parabolic differential equa- 
tions. The numerical results indicate that the Chebyshev rational method possesses a 
significant computational advantage over the standard CrankNicolson tinite difference 
method. Numerical results are also used to demonstrate the usefulness of the Chebyshev 
rational method for solving problems involving piecewise-constant, as a function of 
time, boundary conditions and/or source terms. In addition, an efficient computational 
procedure is outlined for the Chebyshev method. 

INTRODUCTION 

A procedure for using Chebyshev rational approximations to e-5 in [0, co) was 
introduced in [l] for numerically solving linear parabolic equations. This method 
was extended in a more recent paper by Cody, Meinardus, and Varga [2]. An 
important feature of this Chebyshev rational method is that good numerical 
approximations to solutions of linear parabolic problems can be obtained in a 
single time step, as opposed to several time steps required for the conventional 
methods (i.e., the explicit and backward implicit methods [3] and the Crank- 
Nicolson implicit method [3, 41). The purpose of this paper is to present some 
numerical results which compare “Chebyshev finite difference” approximations 
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and the Crank-Nicolson implicit approximations to problems involving linear 
parabolic equations in one space variable. Two types of problems are examined. 
One problem involves homogeneous boundary conditions and time-independent 
source (sink) terms, while the other has homogeneous boundary conditions and 
piecewise-constant in time source terms. In addition to presenting numerical 
results, computationally efficient means of applying the Chebyshev rational 
methods are discussed. 

Test Problems 

The comparison of the Chebyshev rational and the Crank-Nicolson methods is 
based on numerical solutions for the following problem: 

; 2 = g (a$) + il y&) 6(x - X,), 0 < x < L, t > 0 (1) 

subject to the homogeneous boundary conditions 

u(0, t) = u(L, t) = 0 for all t > 0, (2) 

and the homogeneous initial condition 

u(x, 0) = u, = 0, O<x<L, (3) 

where U(X)’ and 7 are assumed to be positive constants, 6(x - ZJ is the Dirac delta 
function (with the ?& chosen to correspond with mesh points) used to represent 
source and sink terms, and yi(t) is a constant in the first test problem for all t 3 0, 
and a positive piecewise-constant in the second test problem with 

where 

rj(t) E bqj” for t,-, < t < t, , n = 1, 2,..., (4) 

0 = t, < t, < ... (5) 

is a partition of the nonnegative real axis. Two source terms (q = 10) located at 
XI = L/4, X, = 3L/4 and a sink (q = -10) at .%, = L/2 are used in the first 
problem. For the second class of problems, the source-sink data are given in 
Tables 4 and 5. The class of physical problems which effectively reduces to Eqs. (l)- 
(3) is extensive, and includes problems associated with fluid flow in porous media 
[5], heat transfer [6] and mass transfer [7]. 

1 The problems considered here treat LY as a constant, but the numerical methods studied can 
also treat the case where a(x) is a positive continuous or a piecewise continuous function of x 
in 0 < x < L. 
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The two test problems outlined above actually describe the flow of a slightly 
compressible homogeneous fluid in a porous medium [5]. The specific values and 
engineering units of the different variables used in these problems are defined in 
the nomenclature. 

Semidiscrete and Fully Discrete Approximations 

Let flN+l be a partition of the interval [0, L], flN+, : 0 = x0 < x1 < ... < xNfl = 
L, such that each source or sink term in Eq. (1) coincides with one of the grid 
points xi . Spatial difference equations are derived by replacing the differential 
equation at each mesh point with an appropriate semidiscrete [3] finite difference 
equation. If the standard three-point, difference approximation [3, p. 1751 of the 
spatial derivatives in (1) is used, then the semidiscrete approximation ti(xi, t) - z?,(t) 
satisfies the following ordinary matrix differential equation: 

B(diY/dt) = -Au + g(t), t > 0, (6) 
where 

U(0) = ii0 E 0, (7) 

and ii(t) = (z&(t), z&(t),..., C,,-l(t), ziN(t))T. The matrix B is a positive real diagonal 
N x N matrix with diagonal elements bii = l/v, and A is a real symmetric tri- 
diagonal positive definitive N x N matrix. The vector g(t) represents the point 
source terms in Eq. (1). 

The semidiscrete approximation to u(x, t) in Eq. (6) can be placed in a fully 
discrete form suitable for numerical solution by applying either the Crank-Nicolson 
method or the Chebyshev rational method. Because a detailed description of the 
Crank-Nicolson method can be found in [l, 31, it will not be discussed further. 

Assuming that vector g is time-independent, the solution ii(t) of (6)-(7) can be 
expressed as 

E(t) = A-lg + exp(- tB-lA){C,, - A-‘g} (8) 

for all t > 0. For any fixed nonnegative integers m and n with 0 < m < n2, let 
imsn(x) = &(x)/&(x) denote the (m, n)-th Chebyshev rational approximation to 
e-x in [0, cc), where $Jx) and &(x) are polynomials with real coefficients of 
degree m and n, respectively. For additional details, see Ref. [2]. The Chebyshev 
rational method provides an approximation to G(t) by formally replacing the 
matrix exponential in (8) with the rational approximation 

(&(tB-lA))-l. ($,(tB-lA)). 

2 In this work, m is chosen equal to n, since there is little to be gained computationally by 
choosing m less than n (see Ref. [2]). 
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In this manner, the (m, n)-th Chebyshev approximation i&,(t) of u(t) is defined, in 
analogy with (8), for all t 3 0 as 

ii,,,(t) = A+ + (&(tB-IA))-1 ($,(tB-lA)){i$ - APE}, (9) 

or equivalently, as 

(g&B-IA)) i?,,,(t) = &(tB-lA)(A-lg) + $m(tB-lA)(B, - A-lg} (10) 

for all t > 0. 
It should be noted that in solving (lo), the matrix A should not be inverted. 

Rather, the steady-state equation Ai? = g is first solved for W. Then, Eq. (10) can 
be replaced by 

(lj,(tB-lA))-lu,,,(t) = &(tB-l/l) w + $m(tB-lA){u, - W}. (11) 

The fundamental theorem of algebra permits factorization of &(x) and &(x) 
into products of linear and quadratic polynomials with real coefficients, hence the 
linear system in (11) can be replaced by 

[fj V,(WA)] ii,,,(t) = [iq W&B-54)] {ii0 - A-1g) + 1 fj V&B-‘A)/ A-l& 
i=l i=l i=l 

(12) 
where Vi and Wi are matrix polynomials of degree one or two. Setting the right 
hand side of (12) equal to 1, , the solution U ,,,(t) can be obtained by solving 
successively the following m, sets of linear equations for xi : 

Vi(tB-lz4) Xi = Xi-1 ) i = 1, 2 ,..., m, . (13) 

Finally 1, = ii,,, (t). This factorization procedure is computationally more 
attractive than simply utilizing a Gaussian elimination method to solve (11). To 
implement the numerical application of the Chebyshev rational method, we give 
the factorizations of&(X) and i&(x) (for the case m = n) for 2 < n < 6 in Table 6. 

The technique of factorization presented in (12) and (13) is equivalent to solving 
m, linear systems, each system being either tridiagonal (Vi is a linear factor) or 
five-diagonal (Vi is a quadratic factor). The power of this factorization technique 
is that it permits the possible use of high order approximations in the Chebyshev 
rational method while it keeps the computational problem at each step [cf. (13)] 
relatively simple. For example, if the (6, 6)-th Chebyshev rational approximation 
is used, &(tB-lA) can be factored into the product of three quadratic matrix 
polynomials. Solving (11) for any value of time “t” then becomes a matter of 
solving three linear five-diagonal systems of equations. 
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For a general time-dependent source term, the solution u(t) of (6)-(7) is given by 

ii(t) = exp(--tB-lA) U(0) + exp(--t&IA) J’ exp(UVA) 
0 

x B-lE(h) CIA for all t > 0. (14) 

If the vector g(t) is piecewise-constant as a function of t 2 0, the interval [0, + co) 
can be partitioned as 0 = to < t, < t, < t, < .*., so that g(t) = gn for all 
t,-, < t < t, . In this case, it follows from (14) that 

%+d = ew-(tn+l - t,) B-lA){u(t,) - A-‘g,+,) + A-l&+1 . 

In analogy with the transition from Eq. (8) to Eq. (9), the matrix 

exp(-(t,+l - t,) B-l4 

(15) 

in (15) is approximated by the matrix 

fm,n((tn+1 - fn) B-l4 = (Mtn+1 - 62) B-14))-1 awG,l - t,) B-IA)) 

to define the (m, n)-th Chebyshev rational approximation U,,,(t,+l) to ii(tn+l). Thus, 

&J&+1) = +m,nwn+1 - t,) ~-lA){u,*&) - A-l&+11 + A-l&+1 , n = 0, 1,2 ,..., 

(16) 
where ii,,, = U, and gn = b(0, 0 ,..., 0, qln/dx, 0 0, ,..., qkn/dx, 0 O)T. ,..., 

Numerical Results 

As mentioned earlier, both test problems utilized the standard, three-point, 
finite difference approximation to discretize the spatial derivative term in (1). A 
uniform partition L7N+1 , of size dx = L/N + 1 is used for both problems. Com- 
parison of the Crank-Nicolson and the Chebyshev rational methods is based on 
numerical solutions to the first problem in which the source term is time- 
independent. The exact solution to (l)-(3) (see [6]), at two different time levels, is 
presented in Fig. 1. Tables I and II present error data on the two methods of 
solution for various time levels. It sould be noted that results presented in Table II 
for the Chebyshev rational method are obtained in a single step for each time level 
reported. The measure of accuracy used is the discrete L, norm 

II GC.3 t) - 4’9 th, = &TN I fGi 3 0 - 4x<, Ol, (17) 

where ti(x, t) is either the Crank-Nicolson approximation or the Chebyshev 
rational approximation of u(x, t). The error behavior in Table I is similar to that 
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FIG. 1. Exact Solution to Eqs. (l)-(3). 

TABLE I 

Lm Error for Crank-Nicolson-CDA Method” 

Cumulative 
time 
w 

(Time-Independent Source Case) 
Time step size (hr) 

At = Cum. At = 0.5 At = 0.25 At = 0.1 At = 0.05 At = 0.005 
time 

0.5 547.5 547.5 168.4 43.8 2.9 3.3 
1.0 912.8 266.2 120.4 12.5 1.6 1.4 
2.0 1283.9 193.0 69.4 2.2 2.0 2.0 
3.0 1414.0 151.8 43.5 1.5 1.9 1.9 
4.0 1443.5 127.6 28.8 1.6 1.7 1.7 
5.0 1514.7 108.9 19.6 1.5 1.6 1.6 
6.0 1611.5 93.7 13.6 1.5 1.5 1.5 
7.0 1699.0 81.2 9.5 1.4 1.4 1.4 
8.0 1778.7 70.8 6.6 1.3 1.4 1.4 
9.0 1851.1 62.3 4.5 1.3 1.3 1.3 

10.0 2687.3 55.0 3.0 1.3 1.3 1.3 

a An = L/40 and CDA refers to central finite difference approximation to the spatial derivatives. 
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TABLE II 

L Error for (n, n)-th Chebyshev Rational-CDA Method 
(Time-Independent Source Case) 

Cumulative 
time 
0-4 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Order of Chebyshev rational method” 

n=l n=2 n=3 n=4 n-5 
.__--.- _ 

210.1 17.3 1.7 1.4 1.4 
100.1 11.6 3.5 2.0 2.0 
44.1 17.4 1.8 2.0 1.9 

127.3 12.7 1.9 1.8 1.7 
180.6 8.6 2.3 1.5 1.6 
211.5 14.0 1.8 1.3 1.6 
226.8 16.6 1.2 1.3 1.4 
231.7 16.6 1.7 1.3 1.4 
230.0 14.9 1.9 1.4 1.3 
224.4 12.1 1.9 1.5 1.3 

a LX = L/40 and each solution was obtained in one time step. CDA refers to the central 
finite difference approximation to the spatial derivatives. 

in Table II. That is, the error approaches a constant for each time level as the time 
increment decreases in the Crank-Nicolson method or as the order (m, n) of the 
Chebyshev rational method increases. This asymptotic error is the space trunca- 
tion error resulting from the finite difference approximation to the spatial derivative 
term in (1). 

The data presented in Tables I and II indicate that, for the same accuracy 
criterion, several time steps are required for the Crank-Nicolson method, as 
opposed to a single time step for the Chebyshev rational method. However, it is 
obvious that the ability to use large time steps and still retain accuracy with the 
Chebyshev rational method is obtained at the expense of added computations. 
Thus an equitable comparison must account for the computations associated with 
each method. To this end, Table III presents the number of equivalent multiplica- 
tions as a function of the number N of internal spatial mesh points for the two 
methods of approximation. The data pertaining to the Chebyshev rational method 
in Table III represents operational counts made for the linear systems in Eq. (13). 
The term “equivalent multiplication” means that each algebraic operation (i.e., 
division, addition, subtraction) is expressed as a multiplication operation by 
employing the appropriate computer execution times (based on the IBM 360-85 
computer execution times) for each type operation. 

Figures 2 and 3 were obtained from the data presented in Tables I-III. These 
figures present the ratio of the number of operations (directly proportional to the 
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TABLE III 

Operational Count for Crank-Nicolson and Chebyshev Rational Methods” 

Solution method Total number of equivalent multiplications 

Crank-Nicolson l/2 (11N - 3) + T(11N - 3)b 

(1, 1)-Chebyshev 33N-9 

(2,2)-Chebyshev l/2 (113N - 59) 

(3,3)-Chebyshev IIN - 34 

(4,4)-Chebyshev l/2 (199N - 109) 

(5,5)-Chebyshev (120N - 59) 

(6,B)Chebyshev l/2 (287N - 159) 

a Both methods employ the standard three point centered finite difference approximation to the 
spatial derivative of Eq. (1). 

b N is the total number of internal (spatial) mesh points and I is the total number of time steps 
for the Crank-Nicolson method. 
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FIG. 2. Comparison of Number of Operations-Crank-Nicolson Method vs. Chebyshev 
Rational Method (L, Norm = 231.7 psi). 
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ratio of computer time) for the Crank-Nicolson and Chebyshev rational methods 
versus simulation time for a fixed error. [I] rG(., t) - ~(0, t)jiL, = 231.7 in Fig. 2 
and II WC*, 0 - 4., th, = 17.4 in Fig. 31. In each of these figures, the error 
corresponds to the maximum error incurred at any time level using the indicated 
Chebyshev rational method. The actual error behavior for the Chebyshev rational 
method for the time period represented in Fig. 3 is presented in Fig. 4. Employing 
the discrete L, norm to construct Figs. 2 and 3 places the Chebyshev rational 
method at a slight disadvantage but facilitates the comparison of the two methods. 
The data in these two figures clearly illustrate the superiority of the Chebyshev 
approach for generating solutions for a fixed accuracy range for any time step 
sufficiently large (see Remarks Section). The computational advantage of the 
Chebyshev rational method clearly increases as the time from the initial condition 
lengthens. For example (using Fig. 3), the Crank-Nicolson method would require 
approximately 1.75 times as much computer time as the (2,2) Chebyshev rational 
method at one hour but 5.0 times as much computer time at nine hours. 

Final numerical results presented in Tables TV and V and in Figs. 5 and 6 

TABLE IV 

Data for Single Time-Dependent Source Problem 
[k = 1 in Eq. (1) and Eq. (16)] 

1 1 5 

2 2 -3 

3 3 4 

4 4 -3 

5 5 0 

6 6 2 

Ax = 2OOO/lOOft. 
fl = loo0 ft. 

illustrate that the Chebyshev rational method can be used in the “time-step” 
fashion indicated by Eq. (16) to give useful numerical approximations to certain 
linear problems involving piecewise-constant in time source terms or boundary 
conditions. 

Remarks 

The data presented here, although limited in scope, indicate that the Chebyshev 
rational method originally outlined in [l] and later extended by Cody, Meinardus 
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TABLE V 

Data for Multi Time-Dependent Source Problem 
[(k = 3 in Eq. (1) and Eq. (16)] 

n f,  (hours) 91” 4ixn 49” 

1 360 1 -1 1 
2 720 2 -2 2 
3 1080 3 -3 3 
4 1440 4 -4 4 

Ax = 2COO/lOOft. 
f ,  = 5OOft. 
5, = lOOOft. 
f ,  = 15OOfL 

16OC 

14oc 

,200 

1000 

_ 600 

a 

E 600 

2 

z 
I 400 

200 

0 

-20-J 

-400 

)- 

) - 

I 

DISTANCE (FEET) 

FIG. 5. Numerical Solutions to Eq. (16) Using Table IV Date (A - (2,2) Chebyshev Method; 
o - Crank-Nicolson Method (At = 0.25) ;-Exact Solution). 
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FIG. 6. Numerical Solutions to Eq. (16) Using Table V Data (A - (2,2) Chebyshev Method; 
o - Crank-Nicolson Method (At = 15.0); - Exact Solution). 

and Varga [2] is an important new approach to obtaining numerical solutions to 
certain linear parabolic problems. It has been shown that the Chebyshev rational 
method can exhibit a significant computational advantage over more conventional 
approximations, and that it can be applied to a wide range of important problems. 
These include problems with piecewise-constant in time boundary conditions 
and/or source terms and problems involving time-independent but spatially 
dependent coefficients [cf. (l)]. In addition, it is anticipated that the Chebyshev 
rational method will offer the same advantages in multidimensional problems. In 
two-dimensional problems, for example, the spatial approximations normally used 
lead to sparce band matrices and the factorization method of (12) allows one to use 
block iterative techniques [3]. Finally, it should be pointed out that for very small 
values of t > 0, the Crank-Nicolson method is preferable to the single step 
Chebyshev rational method (see Fig. 2). This is essentially because the Crank- 
Nicolson method for linear problems can be viewed as a third-order rational 
approximation of exp(--tB-lA) in (8) (cf. [3, p. 2661). The Chebyshev method, on 
the other hand, is defined from a rational matrix approximation of exp(- tB-lA) 
which has maximum error at t = 0. This weakness in the Chebyshev rational 
method can be partially rectified by use of the following modified form of the 
Chebyshev rational method [8]: Let u be the smallest positive zero of im,,(x) - e-“, 
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where r^ ,,,(x) is the “best” (m, n)-th Chebyshev rational approximation of e-x in 
[0, co). Define a new rational approximation ?&(x) of e-” by 

i&(x) = jm’(x)/tjn’(x) = eVm,,(x + u), x E [0, co). (18) 

Clearly, the rational approximation i;,, (x) of e-” has zero error at x = 0 and can 
be used in the obvious manner to define the modified Chebyshev rational method. 
Finally, it should be noted that replacement of &(tB-l-4) and j?m(tB-lA) in Eq. (10) 
by &‘(tB-lA) and j&‘(tB-IA), respectively, allows one to eliminate the direct 
dependence in this equation on A-l. To see this, note that we can write Eq. (12) as 

i&‘(tB-lA) ii,,,(t) = $m’(tB-lA) i&(O) + (gn’(tB-lA) - j3,‘(tll-lA)) Pg. (19) 

But since, by construction, +,!&O) = 1, we evidently have, after normalization, 
that &‘(O) = &‘(O) = 1. Thus, &l(x) - &‘(x) admits a factor of x, which we 
write as R’(x) - &l(x) = s(x) . x, where s(x) is a polynomial of degree at most 
n - 1. This means that the last term in Eq. (19) can be expressed simply as 

(s(tB-IA) * tB-‘A} A-lE = js(tB-IA) B-12, 

so that Eq. (19) loses its dependence on A-l in this case. This procedure of circum- 
venting the problem of computing A-l is particularly important in multi- 
dimensional problems. 
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